Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana.

نویسندگان

  • O Savolainen
  • C H Langley
  • B P Lazzaro
  • H Fr
چکیده

Nucleotide variation at the alcohol dehydrogenase locus (Adh) was studied in the outcrossing Arabidopsis lyrata, a close relative of the selfing Arabidopsis thaliana. Overall, estimated nucleotide diversity in the North American ssp. lyrata and two European ssp. petraea populations was 0.0038, lower than the corresponding specieswide estimate for A. thaliana at the same set of nucleotide sites. The distribution of segregating sites across the gene differed between the two species. Estimated sequence diversity within an A. lyrata population with a large sample size (0.0023) was much higher than has previously been observed for A. thaliana. This North American population has an excess of sites at intermediate frequencies compared with neutral expectation (Tajima's D = 2.3, P < 0.005), suggestive of linked balancing selection or a recent population bottleneck. In contrast, an excess of rare polymorphisms has been found in A. thaliana. Polymorphism within A. lyrata and divergence from A. thaliana appear to be correlated across the Adh gene sequence. The geographic distribution of polymorphism was quite different from that of A. thaliana, for which earlier studies of several genes found low within-population nucleotide site polymorphism and no overall continental differentiation of variation despite large differences in site frequencies between local populations. Differences between the outcrossing A. lyrata and the selfing A. thaliana reflect the impact of differences in mating system and the influence of bottlenecks in A. thaliana during rapid colonization on DNA sequence polymorphism. The influence of additional variability-reducing mechanisms, such as background selection or hitchhiking, may not be discernible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Population dynamics of an Ac-like transposable element in self- and cross-pollinating arabidopsis.

Theoretical models predict that the mating system should be an important factor driving the dynamics of transposable elements in natural populations due to differences in selective pressure on both element and host. We used a PCR-based approach to examine the abundance and levels of insertion polymorphism of Ac-III, a recently identified Ac-like transposon family, in natural populations of the ...

متن کامل

Higher Rates of Protein Evolution in the Self-Fertilizing Plant Arabidopsis thaliana than in the Out-Crossers Arabidopsis lyrata and Arabidopsis halleri

The common transition from out-crossing to self-fertilization in plants decreases effective population size. This is expected to result in a reduced efficacy of natural selection and in increased rates of protein evolution in selfing plants compared with their outcrossing congeners. Prior analyses, based on a very limited number of genes, detected no differences between the rates of protein evo...

متن کامل

Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana.

As a starting point for a phylogenetic study of self-incompatibility (SI) in crucifers and to elucidate the genetic basis of transitions between outcrossing and self-fertilizing mating systems in this family, we investigated the SI system of Arabidopsis lyrata. A. lyrata is an outcrossing close relative of the self-fertile A. thaliana and is thought to have diverged from A. thaliana approximate...

متن کامل

Rates and patterns of molecular evolution in inbred and outbred Arabidopsis.

The evolution of self-fertilization is associated with a large reduction in the effective rate of recombination and a corresponding decline in effective population size. If many spontaneous mutations are slightly deleterious, this shift in the breeding system is expected to lead to a reduced efficacy of natural selection and genome-wide changes in the rates of molecular evolution. Here, we inve...

متن کامل

Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis.

Plants, like animals, use several lines of defense against pathogen attack. Prominent among genes that confer disease resistance are those encoding nucleotide-binding site-leucine-rich repeat (NB-LRR) proteins. Likely due to selection pressures caused by pathogens, NB-LRR genes are the most variable gene family in plants, but there appear to be species-specific limits to the number of NB-LRR ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2000